Registration Open 2025
New Beginnings 2025
Previous slide
Next slide

B.Tech Electronics and Communication Engineering

Duration 4 Years and 3 Years for Lateral Entry

Eligibility Criteria 10+2 with minimum 45% Marks in Physics, Mathematics along with Chemistry/Biotechnology/ Computer Science as one of the subjects. For Lateral entry:

1.Passed Diploma examination with at least 50% marks in any branch of Engineering and Technology. Passed B.Sc. Degree from a recognized University as defined by UGC, with at least 50% marks and passed 10+2 examination with Mathematics as a subject.

2.Provided that the students belonging to B.Sc. stream shall clear the subjects Engineering Graphics/Engineering Drawing and Engineering Mechanics of the First Year Engineering Programme along with the Second-year subjects.

3.Provided that the students belonging to B.Sc. stream shall be considered only after filling the supernumerary seats in this category with students belonging to the Diploma stream.
Shivalik College of Engineering is one of the best colleges in India for “Electronics and Communication Engineering”.

best ECE Colleges in India| B. Tech ECE Eligibility Criteria

Shivalik College of Engineering is the best ECE colleges in India, offers B.Tech in Electronics and Communication Engineering. It is a four-years electrical and electronics engineering undergraduate degree program.

  • This course covers a variety of topics related to the research, design, development, testing, and maintenance of equipment, among other things.
  • B.Tech. ECE is concerned with the design, manufacture and maintenance of communication and broadcast systems, information, networks, systems, semiconductor devices, optical systems, microprocessors, and computing devices, among others.
  • Semiconductor Physics, Digital System Design, Circuit Analysis, Power System, Digital Electronics, and Embedded Systems are just a few of the essential disciplines covered in B.Tech. ECE.

Why take this Course?

Choosing B.Tech in Electronics and Communication Engineering (ECE) offers numerous opportunities, especially with the ongoing government initiatives and a thriving startup ecosystem. Here’s a detailed, point-by-point breakdown of why this branch is an excellent choice:

  • Government Initiatives in the Semiconductor Sector: Government investments in semiconductor manufacturing and research are creating a huge demand for ECE graduates with expertise in chip design and fabrication.
  • Growing Demand in Telecommunications: With 5G and IoT expansion, ECE engineers are needed for network deployment, optimization, and device integration in telecom industries.
  • Boom in Electronics Manufacturing: Government policies are driving the growth of electronics manufacturing, offering ECE professionals opportunities in product design and production.
  • Career Opportunities in Startups: The growing startup ecosystem in India offers ECE graduates roles in emerging technologies such as robotics, IoT, and wearable devices.
  • Wide Range of Career Paths: ECE graduates can pursue careers in telecommunications, embedded systems, R&D, software, and hardware integration, offering diverse job options.
  • International Opportunities: Global demand for communication engineers in developed countries creates significant opportunities for Indian ECE graduates.
  • Interdisciplinary Skills: ECE integrates electrical engineering, computer science, and physics, providing a broad skillset applicable across many industries.
  • Continuous Technological Advancements: With rapid developments in AI, machine learning, and quantum computing, ECE engineers are at the forefront of cutting-edge innovations.

Why Choose the ECE Department at Shivalik College of Engineering:

Shivalik College of Engineering is one of the leading institutions in India for Electronics and Communication Engineering (ECE). At Shivalik, we provide an exceptional learning environment where students gain a deep understanding of both theoretical concepts and cutting-edge technologies, preparing them to tackle challenges in the ever-evolving world of electronics and communication.

  • State-of-the-Art Labs: Our ECE department is equipped with cutting-edge labs that provide hands-on experience with the latest technologies in electronics and communication.
  • Dedicated Project Lab: We have a specialized project lab with ultra-modern tools for IoT, Machine Learning, and robotics, empowering students to work on advanced real-world projects.
  • Industry-Relevant Training: Our collaboration with IIT Roorkee offers students virtual access to world-class labs, enhancing their learning experience with cutting-edge research and tools.
  • Partnership with IIT Bombay (Eyantra Robotics Lab): We have an MOU with IIT Bombay’s Eyantra Robotics Lab, offering students opportunities to work with the latest in robotics technology and tools.
  • Robotics Club: Our vibrant Robotics Club encourages students to design and program robots for various tasks like line-following, maze-solving, and autonomous navigation, fostering creativity and technical skills.
  • Top Placements: Students from our ECE department have been successfully placed in leading core electronics and IT companies, with opportunities aligned to their career aspirations.
  • Holistic Learning Environment: We provide a perfect blend of theoretical knowledge and practical experience, preparing students for both industry and research-oriented careers in electronics and communication.

Career in Electronics and Communication

A career in Electronics and Communication Engineering (ECE) is highly promising given the current and future market demands. The job market for Electronics and Communication Engineering professionals is vast, with significant growth expected in key sectors like telecommunications, AI, IoT, and robotics.
 Government of India’s Chip to Startup (C2S) Program
The Chip to Startup program launched by the Government of India aims to foster innovation in semiconductor design and manufacturing. By supporting startups and innovation in chip design, it is projected to create over 100,000 jobs in the semiconductor and microelectronics sectors over the next
decade.
Government Jobs for ECE Students:
Electronics and Communication Engineering (ECE) graduates have a range of exciting job opportunities in the defense sector, which offers roles across multiple domains including Radar and Communication system, Satellite Communication and Navigation Systems, Embedded Systems for Military Applications, Cybersecurity and Encryption, Electronic Warfare Systems, Defense Research and Development and Aerospace and Avionics.

Key Defense Organizations for ECE Graduates:

  1. DRDO (Defense Research and Development Organization)
  2. BHEL (Bharat Heavy Electricals Limited)
  3. BEL (Bharat Electronics Limited)
  4. ISRO (Indian Space Research Organization)
  5. HAL (Hindustan Aeronautics Limited)
  6. Indian Armed Forces (Indian Army, Navy, Air Force)
  7. National Technical Research Organisation (NTRO)

Private defense contractors (Tata Advanced Systems, L&T Defense, etc.)

Telecommunications and 5G Networks
As per the statistics from International Telecommunication Union (ITU), the telecom industry is expected to generate around 1.5 million new jobs globally by 2025, driven by the expansion of 5G networks.
 Internet of Things (IoT)
The IoT job market is anticipated to grow by 30% from 2023 to 2030, creating more than 1 million new IoT- related jobs in areas like smart homes, industrial automation, and healthcare.
Artificial Intelligence (AI) and Machine Learning (ML)
AI and ML sectors are expected to generate over 2.3 million new jobs globally by 2025, especially in areas like predictive analytics, smart electronics, and autonomous systems.
Robotics and Automation
The robotics industry is projected to create 1 million new jobs globally by 2026, driven by demand for robotics in manufacturing, healthcare, and logistics.
Consumer Electronics
The demand for innovative consumer electronics, such as smartphones, wearables, and home automation products, continues to grow. ECE graduates will find opportunities in design, development, and testing of these devices.
Energy and Sustainability
The renewable energy sector, including energy-efficient electronics, is expected to create over 500,000 new jobs globally by 2030, as countries invest in green technologies.
The global renewable energy market was valued at $1.5 trillion in 2023 and is projected to grow to $2.6 trillion by 2030.

Apart from above job areas, below are the other opportunities to grow in career after pursuing B.tech in ECE.

  • Because a lot of businesses are located in Germany, Canada, China, and the Gulf States, ECE students have a lot of options to work abroad due to the presence of numerous manufacturing companies.
  • After completing their B. Tech. degree, from Best ECE Colleges in India. ECE graduates can seek employment or pursue further education, such as an M. Tech. Or an MBA. They also prepare for a variety of job-related competitive assessments and examinations.
  • The M.Tech. Program in Electronics and Communication Engineering is a two-year full-time degree. The applicants must pass the coveted GATE exam at the national level in order to be admitted to the colleges that offer the course.
  • After completing an MBA program, you will have the opportunity to work for leading firms and business institutions.

Careers

Some of the top job profiles a graduate can get after completing B.Tech ( Hons ) ECE degree includes:

  • Electronics Engineer
  • Field Engineer
  • Production Manager
  • Network Planning Engineer
  • Software Engineer
  • Electronics Technician

The Shivalik Advantage

  • Shivalik College of Engineering is one of the best ECE colleges in India. We have a well-thought-out mechanism for evaluating each student’s performance is in place. Students receive guidance and assistance with their project work, as well as industry-relevant course material.
  • On a regular basis, Guest Lectures, Workshops, SDPs, and Industrial Visits are held on campus to expose students to a variety of industrial techniques and information.
  • Students gain hands-on experience and skill augmentation through Value Added courses, Case Studies & Projects, Seminars, Student Development Programs, and Induction Programs presented on cutting-edge technology.

Top Recruiters

FAQ's

The branches of ECE (Electronics and Communication Engineering) and EEE (Electrical and Electronic Engineering) sound very similar. Many students who are interested in electronics are torn between these two options. Students in EEE must study both electrical and electronic engineering. It is the study and use of electrical systems for use in various environments, and it includes fundamental electronic courses as well as more advanced power system courses.

ECE, on the other hand, mainly deals with analog transmission, basic electronics, solid state devices, microprocessors, digital and analog communication, analog integrated circuits, satellite communication, microwave engineering, antennae and wave progression. The manufacture of electronic devices, circuits, and communications equipment are also discussed in this branch.

Candidates are eligible if they have completed a diploma in Electrical & Electronics Engineering, or Electronics & Communication Engineering. The final admission is decided on the basis of merit and entrance exam score.

Students are given a holistic learning experience and no stone is left unturned in ensuring their professional progress. The Shivalik Computation and Automation Society’s technical events, as well as the ‘Earn While You Learn’ – Internship Program, provide them with the necessary add-on skills and knowledge to face the problems of real life.

Electronics and communication engineering graduates are in high demand and can work in a variety of industries. Multinational companies, healthcare equipment manufacturing, mobile network connection, aviation, corporate business, entrepreneurship, government sector, and other industries such as steel, coal, petroleum, and chemical are all possibilities for an EC engineer.

Dr. Abhishek Sharma is currently serving as the Head of the Department of Electronics and Communication Engineering at Shivalik College of Engineering, Dehradun. With over 16.5
years of experience in teaching and 1 year of industry experience, he has made significant
contributions to both academia and the field of research.
He completed his PhD in Electronics and Communication Engineering from Maharishi
Markandeshwar (Deemed to be University) in 2018. His research interests primarily focus
on Image Processing, an area in which he has published over 30 research papers in highly
reputed national and international journals. He has also been granted 1 patent and has filed 10
additional patents, showcasing his commitment to advancing technology through innovation.
Throughout his career, he has been dedicated to shaping the future of engineering education. He
has previously held teaching positions at renowned institutions such as Chandigarh Group of
Colleges, Landran (Punjab), and Maharishi Markandeshwar (Deemed to be University), Mullana,
where he earned recognition for his dedication to teaching and research.
In recognition of his excellence in education, he was awarded the Best Teacher Award in 2023
and the Favourite Teacher Award in 2022. His unwavering commitment to the academic and
professional development of his students has earned him the admiration and respect of both peers
and students alike.

Contact Info

ECE 2022
ECE 2021
ECE 2020
ECE 2019
ECE 2018
ECE 2017

Program Specific Outcomes and Program Educational Objectives

  • PO
    1

    Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and anengineering specialization to the solution of complex engineering problems

  • PO
    2

    Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, andengineering sciences

  • PO
    3

    Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

  • PO
    4

    Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information toprovide valid conclusions

  • PO
    5

    Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding ofthe limitations

  • PO
    6

    The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professionalengineering practice

  • PO
    7

    Environment and sustainability: Understand the impact of the professional engineering solutions insocietal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development

  • PO
    8

    Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of theengineering practice

  • PO
    9

    Individual and team work: Function effectively as an individual, and as a member or leader in diverseteams, and in multidisciplinary settings

  • PO
    10

    Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

  • PO
    11

    Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one‘s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

  • PO
    12

    Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

  • PSO
    01

    Apply knowledge of electronics and communication systems containing electronic devices, Software, and hardware to design multidisciplinaryprojects.

  • PSO
    02

    Define as well as explain ROBOTICs and Embedded System’s different design technologies, By resolving the various metrics or challenges in designing the system.

  • PEO
    01

    Understand the application of electrical and electronics engineering principles in automotive, energy, manufacturing, and transportation industries.

  • PEO
    02

    Apply the knowledge of electromagnetic systems, electronic devices, and industrial automation to design, implement, and support industrial instrumentation and control systems.

Facilities

Analog Circuits Lab

Analog communication Lab

Antenna Lab

Digital Communication Lab

Digital Electronics Lab

Electronic Devices Lab

Microprocessor Lab

Microwave Lab

Optical Fiber Communication Lab

PCB Lab

Project Lab

Wireless Sensors Lab

SHIVALIK COLLEGE OF ENGINEERING

  • Course Outcomes (COs): It gives the resultant knowledge and skills the student acquiresat the end of each course. It defines the cognitive processes a course provides.
CO Sl. 

No

COURSE OUTCOMES  Mapping of course 

outcome with PO and PSO

PROGRAM – Electronics & Communication Engineering
BECT 302 Electronic Measurement & Instrumentation
BECT  302 CO1- Define the suitable method for measurement of different  electronics component and the error associated with them

CO2- Understand the principal operation of different types of meter  determine the value unknown parameter with the help of ac and dc  bridges.

CO3- Understand the working of the various A/D and D/A convertors  and display devices

CO4- Utilization of CRO in the testing of the circuit

CO5- To analyze the key element of signal generator and analyzer

CO6- Toanalyze the key element of various type recorder and  EEG,EMG,ECG

PO1, PO2, PO3, PO4, P05, PO6, P07, PO9, P010, PO11, PO12, PSO1, PSO2

 

BECT 303 Digital Electronics
BECT  303 CO1- Understand various number systems and logic functions and their  application in digital design.

CO2- Illustrate various combinational logic circuits

CO3- Design various synchronous sequential logic circuits

CO4- Compare different types of logic families which are the base of  different types of logic gates in the domain of economy, performance and  efficiency.

CO5- Determine fault detection techniques for digital logic circuits

CO6- Classify different semiconductor memories

PO1, PO2, PO3, PO4, P05 PO6,PO9, P010, PO11, PO12, PSO1, PSO2
BECT 304 Electronic Devices
BECT  304  CO1-Understand the semiconductors, types, carrier concentration,  Thermistor, Hall effect and also to understand the concept of PN junction, I-V Characteristics

CO2- Demonstrate the operating principle and output characteristics of  pn junction diodes, zenor diode, Varactor diode, BJT, rectifiers and  different diode circuits

CO3- Apply different parameters for characterizing different circuits like  rectifiers, regulators etc. using diodes

CO4- Apply different Biasing methods of BJTs their characteristics and  application

CO5- Analyze the characteristics of the FET devices and their  application.

CO6- Analyze the Biasing method of FET for amplifier applications

PO1, PO2, PO3, PO4, P05 PO6, PO7, P08, PO9, P010 PO11,PO12, PSO1, PSO2
BEET 305 Network analysis & synthesis
CO1- Apply the knowledge of basic circuital law and simplify the  network using reduction techniques

CO2- Analyze the circuit using Kirchhoff’s law and Network  simplification theorems

CO3- Infer and evaluate transient response, Steady state response,  network functions

CO4- Obtain the maximum power transfer to the load , and Analyze  the series resonant and parallel resonant circuit

CO5- Evaluate two-port network parameters , design attenuators and  equalizers

CO6- Synthesize one port network using Foster and Cauer Forms.

PO1, PO2, PO3, PO4, P05, PO6, P07, PO9, P010, PO11, PO12, PSO1, PSO2
BECT 402 Signal & System
BECT  402 CO1- Describe continuous and discrete time signals, their properties  mathematically and operations on dependent as well as independent  variables.

CO2- Describe continuous and discrete time systems, their properties  mathematically and properties of LTI systems.

CO3- Able to understand the Fourier Analysis for both Continuous and  Discrete time signals and systems

CO4- Able to understand the Laplace and Z-transform for Continuous  and Discrete time signals and systems respectively.

CO5- Apply the concept of sampling to convert continuous time signal  to discrete time signals.

CO6- Able to analyze the systems performance using the concepts of  various transforms

PO1, PO2, PO3, PO4, PO5, PSO1, PSO2
BECT 403 Analog Communication
BECT  403 CO1- Illustrate the understanding of signals, types of signals and  building blocks of communication systems.

CO2- Compare different amplitude modulation schemes for their  efficiency, bandwidth and power saving.

CO3- Demonstrate various angle modulation schemes and their  applications

CO4- Illustrate pulsed modulation system and analyze their system  performance.

CO5- Explain various multiplexing techniques, line coding techniques  and TDM hierarchy

CO6- Analyze the behavior of communication systems in the presence  of noise.

PO1, PO2, PO3, PO5, PO10, PSO1, PSO2
BEET 404 Control System
CO1- Understand different types of system and identify a set of  algebraic equations to represent and model a complicated system into a  more simplified form.

CO2- Obtain models of dynamic systems in transfer function and state  space forms

CO3- Improve the system performance by selecting a suitable  controller and/or a compensator for a specific application

CO4- Apply and analyze the various control strategies to different  applications for the problems faced by society.

CO5- Test system Controllability and Observability using state space  representation and applications of state space representation to various  systems.

CO6- Evaluate the system response and stability in both time-domain  and frequency domain.

PO1, PO2, PO3, PO4, P05 PO6, P07, PO9, P010, PO11, PO12, PSO1, PSO2
BECT 405 Analog Circuits
BECT  405 CO1- Describe the characteristics of diodes and transistors, current  mirror circuit.

CO2- Illustrate various amplifier circuits

CO3- Apply the functioning of OP-AMP and design OP-AMP based  circuits

CO4- Analysis and design competence on Opamp RC filters also  Design low pass, high pass, band pass and band elimination filter  networks

CO5- Evaluate the functioning of Generation of square and triangular  waveform using OPAMP based a stable multi vibrator

CO6- Evaluate the functioning of Generation of square and triangular  waveform using IC 555 timer based a stable multi vibrator

PO1, PO2, PO3, PO4, P05, PO6, P07, PO8, PO9, P010 PO11, PO12, PSO1, PSO2
BHUT 401 Universal Human Value-2
BHUT  401 CO1- Understand Human values, need and concept in individual’s life

CO2-Analyze the concept of co-existence and evaluate the program to  ensure self-regulation

CO3- Understand and identify holistic perception of harmony at all  levels such as self , family , society and nature

CO4- Reshape the concept about different values and discriminate  them

CO5- Apply professional ethics in future profession and contribute  towards building a value based society

CO6- Incorporate self-exploration and its application for self evaluation and development.

PO1, PO3, PO4, P05, PO6, P07, PO8, PO9, P010, PSO1, PSO2
BECT 501 Microprocessor & Interfacing
BECT  501 CO1- Enumerate the Operations of microprocessor, controllers and  peripherals.

CO2- Apply knowledge of an advanced element of learning in the field  of Microprocessors.

CO3- Analyze the processor and controller with peripherals.

CO4- Outline the design of Microprocessor based time systems.

CO5-llustratethe assembly language programming of processor

CO6-Evaluate real time constraints while programming &hardware  designing and provide solution to them.

PO1, PO2, PO3, PO4, PO5, PSO1, PSO2
BECT 502 Electromagnetic Theory
BECT  502 CO1- REMEMBER the basics of vectors and vector calculus.

CO2-UNDERSTANDthe various coordinate systems and the concept of  gradient, divergence and curl.

CO3-UNDERSTANDbasic principles of electrostatics and magneto  statics and use them to find Maxwell’s equations.

CO4-APPLY the principles of dynamic field to find the modification in  Maxwell’s equations.

CO5-APPLY the Maxwell’s equation in obtaining the wave equations  and solve plane wave propagation in various conditions

CO6- ANALYZE the transmission line equation and apply it in various  possible conditions

PO1, PO2, PO3, PO4, P05, PO6, P07, PO8, PO9, P010, PO11, PO12, PSO1, PSO2
BECT 503 VLSI Technology and Design
BECT  503 CO1- The basics of analog electronics devices and digital electronics  devices.

CO2- Understand the different fabrication steps for the crystal growth.

CO3- Solve the various parameters explaining the electrical & device  modeling parameters.

CO4- Illustrate the working of PMOS, NMOS and CMOS, their electrical  properties and design gates with them.

CO5- Solve the parameters like power dissipation, timing issues etc for  the combinational, sequential circuits and memories.

CO6- Analyze the various ASIC’s circuits like PLA’s, CPLD’s, FPGA’s  and their design and testing tools.

PO1, PO2, PO3, PO4, PO5 PO9, PO11, PO12, PSO1, PSO2
BECT 504 (B) Data Communication and Networks
BECT 504  (B) CO1- Understand and describe about the working of Computer  Networks

CO2- Illustrate reference models with layers, protocols and  interfaces

CO3- Model the LAN and WAN configuration using different  media.

CO4-Examine problems of a computer networks.

CO5- Test networks to verify connectivity and operational status CO6- Design safe and secure computer networks

PO1, PO2, PO3, PO4, PO5, PO6, PO7, PO9, PO10, PO11, PO12, PSO1, PSO2
BOEC 505 (B) Computer system Organization
BOEC 505  (B) CO1- Understand the functional units of processor and the factors  affecting the performance of a computer.

CO2-Analyze the effect of addressing modes on the execution time  of a program.

CO3- Understand the computer arithmetic and design algorithms  for various operations.

CO4- Implement the basic knowledge of I/O devices and  interfacing of I/O devices with computer.

CO5- Analyze the CPU design including the RISC/CISC  architectures.

CO6- Apply pipeline and Vector processing in designing Different  Structure of computer communication.

PO1, PO2, PO3,PO4, PO6, PO7,PO10, PO11, PO12, PSO1, PSO2
BECT 601 Digital signal Processing
BECT 601  CO1- Remember the concept of Discrete time signals and systems  along with the Z-transform basics.

CO2- Understand the concepts of Discrete Fourier Transform.

CO3- Understand the concepts of FFT algorithms for efficient  computation of DFT.

CO4- Apply the concepts of system analysis and realization to  make : design IIR Filters

CO5- Apply the concepts of system analysis and realization to  make : design FIR Filters

CO6- Remember the concept of Discrete time signals and systems  along with the Z-transform basics.

PO1, PO2, PO3, PO4, PO5, PSO1, PSO2
BECT 602 Antenna and Wave Propagation
BECT 602 CO1- Define various antenna parameters

CO2- Illustrate techniques for antenna parameter measurements.

CO3- Analyze radiation patterns of antennas

CO4- Apply various applications of antennas

CO5- R apply the concept of radio wave propagation

CO6- Evaluate antennas for given specifications

PO1, PO2, PO3, PO4, PO5, PO6, PO7, PO8, PO9,PO10, PO11, PO12  PSO1, PSO2
BECT 603 Digital Communication
BECT 603  CO1- Remember the basics of Communication processes  emphasizing on baseband signal modeling

CO2- Illustrate the typical source coding techniques and calculate  Entropy of source.

CO3- Understand the generation, detection signal space diagram,  spectrum, bandwidth efficiency, and probability of error analysis of  different band pass modulation techniques.

CO4- Determine the performance of different error control coding

PO1, PO2, PO3, PO4, PSO1, PSO2
schemes for the reliable transmission over the channel

CO5- Illustrate various spreading techniques and determine bit error  performance of various digital communication systems.

CO6- Analyze the design of matched filter receiver for optimum  performance

BECT 604 (B) CMOS Design
BECT 604  (B) CO1-Describe the VLSI design flow, basic theory of MOS  transistors, basic steps of fabrication of NMOS & CMOS Process.

CO2-Illustrate Characterizing equation of synchronous sequential  machine and Mealy and Moore model machines state table and  transition diagram

CO3-Apply the functioning of CMOS in Logic and Combinational  circuits.

CO4-Analysis and Design of the asynchronous sequential machine,  analyze the performance of CMOS Inverter circuits on the basis of  their operation and working.

CO5-Evaluate strategies for testing of MOS and BJT Models.

PO1, PO2, PO3, PO4, PO5, PO6, PSO1, PSO2
BOEC 605 (D) IoT and Applications
BOEC  

605 (D)

CO1-Describe the definition and significance of IoT

CO2-Illustrate Characteristics of IoT and communication models

CO3-Apply the functioning of Iot in Network & Communication.

CO4-Analysis the various challenges in IoT.

CO5-Evaluate IoTs utilization in different applications of IoT  technologies in practical domains of society

PO1, PO2, PO3, PO4, PO5, PO6, PO10, PSO1, PSO2
BECT 701 Microwave Engineering
BECT  

701

CO1- REMEMBER the basics of vectors and vector calculus.

CO2- UNDERSTAND the various coordinate systems and the  concept of gradient, divergence and curl.

CO3- UNDERSTAND basic principles of electrostatics and  magneto statics and use them to find Maxwell’s equations.

CO4- APPLIES the principles of dynamic field to find the  modification in Maxwell’s equations.

CO5- APPLY the Maxwell’s equation in obtaining the wave  equations and solve plane wave propagation in various conditions

CO6- ANALYZE the transmission line equation and apply it in  various possible conditions.

PO1, PO2, PO3, PO4, PO5,PO6,PO7, PO8, PO9, PO10, PO11, PO12, PSO1, PSO2
BECT 702 Optical Fiber Communication
BECT  

702

CO1- Recognize and classify the structures of Optical fiber and  types

CO2- Classify the Optical sources and detectors and to discuss  their principle.

CO3- Discuss the channel impairments like losses and dispersion.

CO4- Analyze various coupling losses

CO5- Familiar with Design considerations of fiber optic systems

CO6- To perform characteristics of optical fiber, sources and  detectors.

PO1, PO2, PO3, PO4, PO5, PO6, PO7, PO9, PO10, PO11, PO12, PSO1, PSO2
BECT 703 (B) Digital Image Processing
BECT  

703 (B

CO1-REMEMBER the basics of visual perception and color  models, image formation, sampling quantization.

CO2-UNDERSTAND the steps involved in digital image  processing systems.

CO3-UNDERSTAND the various domains for image processing  and make necessary noise models.

CO4-APPLY the steps like enhancement on the images.

CO5-APPLY segmentation on the images Using Morphological  Watersheds. Representation

CO6-ANALYZE the complex video processing techniques like  MPEG4 nad H.26X

PO1, PO2, PO3, PO4, PO5, PO6, PO7, PO10, PO12, PSO1, PSO2
BOEC 704 (B) Artificial Intelligence
BOEC  

704 (B

CO1- Demonstrate fundamental understanding of the history of  artificial intelligence (AI) and its foundations

CO2- Apply basic principles of AI in solutions that require  problem solving, inference, perception, knowledge representation,  and learning.

CO3- Demonstrate awareness and a fundamental understanding of  various applications of AI techniques in intelligent agents, expert  systems, artificial neural networks and other machine learning  models

CO4- Demonstrate proficiency developing applications in an ‘AI  language’, expert system shell, or data mining too

CO5- Demonstrate proficiency in applying scientific method to  models of machine learning.

CO6- Able to understand and develop expert systems for any real  time application

PO1, PO2, PO3, PO4, PO5, PO6, PO7, PO11, PSO1, PSO2
BECT 801 Television and Radar Engineering
BECT  

801

CO1- Define various television basic principle, standards and  television Pick-up devices and Cameras.

CO2- Illustrate techniques for Television transmission and  reception.

CO3- Illustrate various Digital Television Technology

CO4- Apply performance factors

CO5- Apply the concept of Radar receiver

CO6- Apply the concept of Radar Receiver in Other Radar  systems

PO1, PO2, PO3, PO4, PO6,PO7, PO8,PO9,PO10, PO11,PO12 PSO1, PSO2
BECT 802 Wireless Communication
BECT  

802

CO1- Relation with the basics of communication learned in  different engineering subjects.

CO2- Compare the fundamentals learnt in previous  communication subject with the wireless propagation mechanisms  and channel classification learned here

CO3- Apply the learnt mechanisms and previous knowledge in  demonstrating the various modulation techniques in selecting the  wireless communication transceivers.

CO4- Analyze the different diversity techniques and illustrate  them in different signal processing units of wireless  communication systems problems

CO5- Classify the basics of Channel coding schemes and speech  coding technique and examine them for wireless communication  systems

CO6- Formulate the different advance level multiple access  schemes and application of different multiplexing schemes in  advance transceiver schemes and its applications.

PO1, PO2, PO3, PO4,PO5,PO7, PO12, PSO1, PSO2
EC 803 (A) Digital System Design using VHDL
EC 803  

(A)

CO1-Describe the model, simulate, verify, and synthesize with  hardware description languages.

CO2-Illustrate the concept of state machine SM charts using  microprogramming.

CO3-Apply the VHDL in PLDs and Field Programmable Logic  Arrays (FPGAs).

CO4-Analysis of the combinational logic circuit using VHDL  code.

CO5-Evaluate the functioning of the Digital system using VHDL  code.

PO1,PO2,PO3,PO4,PO5,PO6,PO11, PSO1, PSO2
BOEC 804 (B) Machine Learning
BOEC

804 (B)

CO1- Learn the basics of learning problems with hypothesis and  version spaces

CO2- Understand the features of machine learning to apply on  real world problems

CO3- Characterize the machine learning algorithms as supervised  learning and unsupervised learning and Apply and analyze the  various algorithms of supervised and unsupervised learning

CO4- Design and apply various reinforcement algorithms to solve  real time complex problems.

CO5- Demonstrate proficiency in applying scientific method to  models of machine learning.

CO6- Understand the basic concepts of deep neural network  model and design the same.

PO1,PO2,PO3, PO4,PO5,PO9, PO10,PSO1, PSO2

 

Vision & Mission

Vision of the Department

The department of Electronics and Communication Engineering endeavors to nurture Engineering Technocrats with good academics, creativity, ethical and human values to serve as a valuable resource for the industry and the society at large.

Mission of Department

  • To provide a healthy Environment to the students for technical Education and Learning.
  • To develop the creative and problem- solving skills among the students meets the industry and society needs.
  • To inculcate a self-learning attitude, Entrepreneurial skills and professional ethics.